Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 172394, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636850

RESUMEN

Microplastics (MPs) and persistent pollutants (POPs) are new pollutants that are extensively studied worldwide. To fill the gaps that the degradation processes and mechanisms of polycyclic aromatic hydrocarbons (PAHs) on the surface of most MPs are still unclear, the photochemical transformation of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) MPs and polystyrene (PS) MPs in water were investigated and compared. The photolysis of BaA on the surface of PS in water proceeded easier than that on PVC within the 48 h irradiation period, with the pseudo-first-order rate constant of 0.0489 min-1 and 0.0181 min-1, respectively, which can be ascribed to the smaller particle size and more OH production of PS MPs. Due to the light competition between the chromophore and BaA as well as the light-shielding effect, aged MPs showed an inhibitory effect on the degradation of BaA compared with pristine MPs. For BaA/PVC MPs system, the degradation of BaA in real water was not significantly affected by coexisting ions and humic acid (HA) (p < 0.05), while slight inhibitory effect on the degradation of BaA appeared for PS MPs in different water matrices (UP: 86.97 %, YR: 84.47 %, PR: 81.42 % and HR: 83.21 %). According to the electron paramagnetic resonance (EPR) test, quenching experiment and probe experiment, the relative contribution of direct photolysis (PVC: 82.02 %; PS: 69.54 %) and indirect photolysis (PVC: 17.98 %; PS: 30.46 %) was confirmed. A total of 14 products were identified, and the product types were not affected by plastics aging. The results of the toxicity assessment indicated that although some intermediate products remained toxic to aquatic organisms, the toxicity of most products was lower than that of BaA. This study provides new insights into the environmental fate of PAHs and the role of MPs in the photolysis process of contaminants in surface water.

2.
J Hazard Mater ; 445: 130475, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36455331

RESUMEN

The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Éter , Fotólisis , Poliestirenos/toxicidad , Polipropilenos , Polietileno , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...